| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 2 |
1
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 3 |
|
rersubcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR ) |
| 4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A -R B ) e. RR ) |
| 5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 6 |
|
rersubcl |
|- ( ( ( A -R B ) e. RR /\ C e. RR ) -> ( ( A -R B ) -R C ) e. RR ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) -R C ) e. RR ) |
| 8 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 9 |
8
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 10 |
5
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 11 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) -R C ) e. CC ) |
| 12 |
9 10 11
|
addassd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + C ) + ( ( A -R B ) -R C ) ) = ( B + ( C + ( ( A -R B ) -R C ) ) ) ) |
| 13 |
|
repncan3 |
|- ( ( C e. RR /\ ( A -R B ) e. RR ) -> ( C + ( ( A -R B ) -R C ) ) = ( A -R B ) ) |
| 14 |
5 4 13
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( ( A -R B ) -R C ) ) = ( A -R B ) ) |
| 15 |
14
|
oveq2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + ( C + ( ( A -R B ) -R C ) ) ) = ( B + ( A -R B ) ) ) |
| 16 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 17 |
|
repncan3 |
|- ( ( B e. RR /\ A e. RR ) -> ( B + ( A -R B ) ) = A ) |
| 18 |
8 16 17
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + ( A -R B ) ) = A ) |
| 19 |
12 15 18
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + C ) + ( ( A -R B ) -R C ) ) = A ) |
| 20 |
2 7 19
|
reladdrsub |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) -R C ) = ( A -R ( B + C ) ) ) |