Metamath Proof Explorer


Theorem reltsubadd2

Description: 'Less than' relationship between addition and subtraction. Compare ltsubadd2 . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion reltsubadd2 A B C A - B < C A < B + C

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 readdcl B C B + C
3 2 3adant1 A B C B + C
4 simp2 A B C B
5 reltsub1 A B + C B A < B + C A - B < B + C - B
6 1 3 4 5 syl3anc A B C A < B + C A - B < B + C - B
7 repncan2 B C B + C - B = C
8 7 3adant1 A B C B + C - B = C
9 8 breq2d A B C A - B < B + C - B A - B < C
10 6 9 bitr2d A B C A - B < C A < B + C