Description: Comparison of two numbers whose difference is positive. Compare posdif . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | reposdif | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B -R A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltsub1 | |- ( ( A e. RR /\ B e. RR /\ A e. RR ) -> ( A < B <-> ( A -R A ) < ( B -R A ) ) ) |
|
2 | 1 | 3anidm13 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A -R A ) < ( B -R A ) ) ) |
3 | resubid | |- ( A e. RR -> ( A -R A ) = 0 ) |
|
4 | 3 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( A -R A ) = 0 ) |
5 | 4 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A -R A ) < ( B -R A ) <-> 0 < ( B -R A ) ) ) |
6 | 2 5 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B -R A ) ) ) |