Metamath Proof Explorer


Theorem reposdif

Description: Comparison of two numbers whose difference is positive. Compare posdif . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion reposdif
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B -R A ) ) )

Proof

Step Hyp Ref Expression
1 reltsub1
 |-  ( ( A e. RR /\ B e. RR /\ A e. RR ) -> ( A < B <-> ( A -R A ) < ( B -R A ) ) )
2 1 3anidm13
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A -R A ) < ( B -R A ) ) )
3 resubid
 |-  ( A e. RR -> ( A -R A ) = 0 )
4 3 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( A -R A ) = 0 )
5 4 breq1d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A -R A ) < ( B -R A ) <-> 0 < ( B -R A ) ) )
6 2 5 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B -R A ) ) )