Metamath Proof Explorer


Theorem reposdif

Description: Comparison of two numbers whose difference is positive. Compare posdif . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion reposdif ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 reltsub1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 𝐴 ) < ( 𝐵 𝐴 ) ) )
2 1 3anidm13 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 𝐴 ) < ( 𝐵 𝐴 ) ) )
3 resubid ( 𝐴 ∈ ℝ → ( 𝐴 𝐴 ) = 0 )
4 3 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐴 ) = 0 )
5 4 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 𝐴 ) < ( 𝐵 𝐴 ) ↔ 0 < ( 𝐵 𝐴 ) ) )
6 2 5 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 𝐴 ) ) )