Description: Comparison of two numbers whose difference is positive. Compare posdif . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | reposdif | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 −ℝ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltsub1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 −ℝ 𝐴 ) < ( 𝐵 −ℝ 𝐴 ) ) ) | |
2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 −ℝ 𝐴 ) < ( 𝐵 −ℝ 𝐴 ) ) ) |
3 | resubid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 𝐴 ) = 0 ) | |
4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐴 ) = 0 ) |
5 | 4 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 −ℝ 𝐴 ) < ( 𝐵 −ℝ 𝐴 ) ↔ 0 < ( 𝐵 −ℝ 𝐴 ) ) ) |
6 | 2 5 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 −ℝ 𝐴 ) ) ) |