| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resexg |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 3 |
|
simpr |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
| 4 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 6 |
5
|
simp2d |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐹 Fn 𝐴 ) |
| 7 |
|
simpl |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐵 ⊆ 𝐴 ) |
| 8 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 10 |
5
|
simp3d |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 11 |
|
ssralv |
⊢ ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 12 |
7 10 11
|
sylc |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 15 |
14
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 16 |
12 15
|
sylibr |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 17 |
|
elixp2 |
⊢ ( ( 𝐹 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 18 |
2 9 16 17
|
syl3anbrc |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ) |