| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unexg |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 3 |
|
ixpfn |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) |
| 4 |
|
ixpfn |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → 𝐹 Fn 𝐵 ) |
| 5 |
|
3simpa |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ) ) |
| 6 |
5
|
ancomd |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ) |
| 7 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 8 |
|
fnun |
⊢ ( ( ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 10 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 11 |
10
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 14 |
13
|
fneq2d |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ↔ ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 15 |
9 14
|
mpbird |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
| 16 |
15
|
3exp |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
| 17 |
3 4 16
|
syl2imc |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
| 18 |
17
|
3imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
| 19 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 20 |
19
|
simp3bi |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 21 |
|
fndm |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) |
| 22 |
|
elndif |
⊢ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 23 |
|
eleq2 |
⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ dom 𝐺 ) ) |
| 24 |
23
|
notbid |
⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
| 25 |
24
|
eqcoms |
⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
| 26 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 27 |
25 26
|
biimtrdi |
⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
| 28 |
21 22 27
|
syl2im |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
| 29 |
28
|
ralrimiv |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 30 |
|
uneq2 |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ) |
| 31 |
|
un0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) |
| 32 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 33 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 34 |
33
|
biimpd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 35 |
34
|
eqcoms |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 36 |
32 35
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 37 |
30 31 36
|
sylancl |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 38 |
37
|
com12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 39 |
38
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 40 |
20 29 39
|
syl2imc |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 41 |
3 40
|
syl |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 42 |
41
|
impcom |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 43 |
|
elixp2 |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 44 |
43
|
simp3bi |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 45 |
|
fndm |
⊢ ( 𝐹 Fn 𝐵 → dom 𝐹 = 𝐵 ) |
| 46 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 47 |
|
eleq2 |
⊢ ( 𝐵 = dom 𝐹 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ dom 𝐹 ) ) |
| 48 |
47
|
notbid |
⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹 ) ) |
| 49 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 50 |
48 49
|
biimtrdi |
⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 51 |
50
|
eqcoms |
⊢ ( dom 𝐹 = 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 52 |
45 46 51
|
syl2im |
⊢ ( 𝐹 Fn 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 53 |
52
|
ralrimiv |
⊢ ( 𝐹 Fn 𝐵 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 54 |
|
uneq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
| 55 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) |
| 56 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) |
| 57 |
|
un0 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) |
| 58 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 59 |
|
eleq1 |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 60 |
59
|
biimpd |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 61 |
60
|
eqcoms |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 62 |
58 61
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 63 |
56 57 62
|
sylancl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 64 |
54 55 63
|
sylancl |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 65 |
64
|
com12 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 66 |
65
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 67 |
44 53 66
|
syl2imc |
⊢ ( 𝐹 Fn 𝐵 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 68 |
4 67
|
syl |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 69 |
68
|
imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 70 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 71 |
42 69 70
|
sylanbrc |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 72 |
71
|
ex |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 73 |
|
raleq |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 74 |
73
|
imbi2d |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ↔ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 75 |
72 74
|
imbitrrid |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 76 |
75
|
eqcoms |
⊢ ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 77 |
10 76
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 78 |
77
|
3imp231 |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 79 |
|
df-fn |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ↔ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) |
| 80 |
|
df-fn |
⊢ ( 𝐹 Fn 𝐵 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ) |
| 81 |
|
simpl |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → Fun 𝐹 ) |
| 82 |
|
simpl |
⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → Fun 𝐺 ) |
| 83 |
81 82
|
anim12i |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| 84 |
83
|
3adant3 |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| 85 |
|
ineq12 |
⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) |
| 86 |
85 7
|
eqtrdi |
⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 87 |
86
|
ad2ant2l |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 88 |
87
|
3adant3 |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 89 |
|
fvun |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
| 90 |
84 88 89
|
syl2anc |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
| 91 |
90
|
eleq1d |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 92 |
91
|
ralbidv |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 93 |
92
|
3exp |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 94 |
80 93
|
sylbi |
⊢ ( 𝐹 Fn 𝐵 → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 95 |
94
|
com12 |
⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 96 |
79 95
|
sylbi |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 97 |
3 4 96
|
syl2imc |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 98 |
97
|
3imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 99 |
78 98
|
mpbird |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 100 |
|
elixp2 |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 101 |
2 18 99 100
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |