Step |
Hyp |
Ref |
Expression |
1 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
2 |
|
resubeu |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
3 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 → ∃ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
5 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
6 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
7 |
|
sn-subeu |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) |
9 |
|
riotass |
⊢ ( ( ℝ ⊆ ℂ ∧ ∃ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ∧ ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
10 |
1 4 8 9
|
mp3an2i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
12 |
|
resubval |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
13 |
|
subval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
14 |
6 5 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) |
15 |
11 12 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) = ( 𝐴 − 𝐵 ) ) |