Metamath Proof Explorer


Theorem resubeqsub

Description: Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024)

Ref Expression
Assertion resubeqsub ABA-B=AB

Proof

Step Hyp Ref Expression
1 ax-resscn
2 resubeu BA∃!xB+x=A
3 reurex ∃!xB+x=AxB+x=A
4 2 3 syl BAxB+x=A
5 recn BB
6 recn AA
7 sn-subeu BA∃!xB+x=A
8 5 6 7 syl2an BA∃!xB+x=A
9 riotass xB+x=A∃!xB+x=Aιx|B+x=A=ιx|B+x=A
10 1 4 8 9 mp3an2i BAιx|B+x=A=ιx|B+x=A
11 10 ancoms ABιx|B+x=A=ιx|B+x=A
12 resubval ABA-B=ιx|B+x=A
13 subval ABAB=ιx|B+x=A
14 6 5 13 syl2an ABAB=ιx|B+x=A
15 11 12 14 3eqtr4d ABA-B=AB