Metamath Proof Explorer


Theorem sn-subeu

Description: negeu without ax-mulcom and complex number version of resubeu . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-subeu AB∃!xA+x=B

Proof

Step Hyp Ref Expression
1 sn-negex AyA+y=0
2 1 adantr AByA+y=0
3 simprl AByA+y=0y
4 simplr AByA+y=0B
5 3 4 addcld AByA+y=0y+B
6 simplrr AByA+y=0xA+y=0
7 6 oveq1d AByA+y=0xA+y+B=0+B
8 simplll AByA+y=0xA
9 simplrl AByA+y=0xy
10 simpllr AByA+y=0xB
11 8 9 10 addassd AByA+y=0xA+y+B=A+y+B
12 sn-addlid B0+B=B
13 10 12 syl AByA+y=0x0+B=B
14 7 11 13 3eqtr3rd AByA+y=0xB=A+y+B
15 14 eqeq2d AByA+y=0xA+x=BA+x=A+y+B
16 simpr AByA+y=0xx
17 9 10 addcld AByA+y=0xy+B
18 8 16 17 sn-addcand AByA+y=0xA+x=A+y+Bx=y+B
19 15 18 bitrd AByA+y=0xA+x=Bx=y+B
20 19 ralrimiva AByA+y=0xA+x=Bx=y+B
21 reu6i y+BxA+x=Bx=y+B∃!xA+x=B
22 5 20 21 syl2anc AByA+y=0∃!xA+x=B
23 2 22 rexlimddv AB∃!xA+x=B