| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tru | ⊢ ⊤ | 
						
							| 2 |  | biimt | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  ( 𝑥  =  𝐶  ↔  ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐶  ∈  𝐴  →  ( 𝑥  =  𝐶  ↔  ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 ) ) ) | 
						
							| 4 |  | ibar | ⊢ ( 𝐶  ∈  𝐴  →  ( 𝑥  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 5 | 3 4 | bitr3d | ⊢ ( 𝐶  ∈  𝐴  →  ( ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ( 𝐶  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 7 | 6 | pm5.32ri | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 )  ↔  ( 𝐶  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) | 
						
							| 8 | 5 7 | bitr4di | ⊢ ( 𝐶  ∈  𝐴  →  ( ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 9 | 8 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 10 |  | ralbi | ⊢ ( ∀ 𝑦  ∈  𝐵 ( ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 12 | 11 | eubidv | ⊢ ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐴  →  ( ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 13 |  | r19.28zv | ⊢ ( 𝐵  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) ) | 
						
							| 14 | 13 | eubidv | ⊢ ( 𝐵  ≠  ∅  →  ( ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) ) | 
						
							| 15 | 12 14 | sylan9bb | ⊢ ( ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐴  ∧  𝐵  ≠  ∅ )  →  ( ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) ) | 
						
							| 16 | 1 | biantrur | ⊢ ( 𝑥  =  𝐶  ↔  ( ⊤  ∧  𝑥  =  𝐶 ) ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃ 𝑦  ∈  𝐵 ( ⊤  ∧  𝑥  =  𝐶 ) ) | 
						
							| 18 | 17 | reubii | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( ⊤  ∧  𝑥  =  𝐶 ) ) | 
						
							| 19 |  | reusv2lem4 | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( ⊤  ∧  𝑥  =  𝐶 )  ↔  ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 ) ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃! 𝑥 ∀ 𝑦  ∈  𝐵 ( ( 𝐶  ∈  𝐴  ∧  ⊤ )  →  𝑥  =  𝐶 ) ) | 
						
							| 21 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 22 | 15 20 21 | 3bitr4g | ⊢ ( ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐴  ∧  𝐵  ≠  ∅ )  →  ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃! 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) |