Metamath Proof Explorer


Theorem reusv2lem4

Description: Lemma for reusv2 . (Contributed by NM, 13-Dec-2012)

Ref Expression
Assertion reusv2lem4 ( ∃! 𝑥𝐴𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ↔ ∃! 𝑥𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-reu ( ∃! 𝑥𝐴𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ) )
2 anass ( ( ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑦𝐵 ∧ ( ( 𝐶𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) ) )
3 rabid ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } ↔ ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) )
4 3 anbi1i ( ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) ∧ 𝑥 = 𝐶 ) )
5 anass ( ( ( 𝑥𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) )
6 eleq1 ( 𝑥 = 𝐶 → ( 𝑥𝐴𝐶𝐴 ) )
7 6 anbi1d ( 𝑥 = 𝐶 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝐶𝐴𝜑 ) ) )
8 7 pm5.32ri ( ( ( 𝑥𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝐶𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) )
9 5 8 bitr3i ( ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) ↔ ( ( 𝐶𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) )
10 9 anbi2i ( ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) ) ↔ ( 𝑦𝐵 ∧ ( ( 𝐶𝐴𝜑 ) ∧ 𝑥 = 𝐶 ) ) )
11 2 4 10 3bitr4ri ( ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) ) ↔ ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } ∧ 𝑥 = 𝐶 ) )
12 11 rexbii2 ( ∃ 𝑦𝐵 ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) ↔ ∃ 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝐶 )
13 r19.42v ( ∃ 𝑦𝐵 ( 𝑥𝐴 ∧ ( 𝜑𝑥 = 𝐶 ) ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ) )
14 nfrab1 𝑦 { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) }
15 nfcv 𝑧 { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) }
16 nfv 𝑧 𝑥 = 𝐶
17 nfcsb1v 𝑦 𝑧 / 𝑦 𝐶
18 17 nfeq2 𝑦 𝑥 = 𝑧 / 𝑦 𝐶
19 csbeq1a ( 𝑦 = 𝑧𝐶 = 𝑧 / 𝑦 𝐶 )
20 19 eqeq2d ( 𝑦 = 𝑧 → ( 𝑥 = 𝐶𝑥 = 𝑧 / 𝑦 𝐶 ) )
21 14 15 16 18 20 cbvrexfw ( ∃ 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝐶 ↔ ∃ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 )
22 12 13 21 3bitr3i ( ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ) ↔ ∃ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 )
23 22 eubii ( ∃! 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ) ↔ ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 )
24 elex ( 𝐶𝐴𝐶 ∈ V )
25 24 ad2antrl ( ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) → 𝐶 ∈ V )
26 3 25 sylbi ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝐶 ∈ V )
27 26 rgen 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝐶 ∈ V
28 nfv 𝑧 𝐶 ∈ V
29 17 nfel1 𝑦 𝑧 / 𝑦 𝐶 ∈ V
30 19 eleq1d ( 𝑦 = 𝑧 → ( 𝐶 ∈ V ↔ 𝑧 / 𝑦 𝐶 ∈ V ) )
31 14 15 28 29 30 cbvralfw ( ∀ 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝐶 ∈ V ↔ ∀ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑧 / 𝑦 𝐶 ∈ V )
32 27 31 mpbi 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑧 / 𝑦 𝐶 ∈ V
33 reusv2lem3 ( ∀ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑧 / 𝑦 𝐶 ∈ V → ( ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ) )
34 32 33 ax-mp ( ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 )
35 df-ral ( ∀ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝑧 / 𝑦 𝐶 ) )
36 nfv 𝑧 ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 )
37 14 nfcri 𝑦 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) }
38 37 18 nfim 𝑦 ( 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝑧 / 𝑦 𝐶 )
39 eleq1 ( 𝑦 = 𝑧 → ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } ↔ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } ) )
40 39 20 imbi12d ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝑧 / 𝑦 𝐶 ) ) )
41 36 38 40 cbvalv1 ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝑧 / 𝑦 𝐶 ) )
42 3 imbi1i ( ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) → 𝑥 = 𝐶 ) )
43 impexp ( ( ( 𝑦𝐵 ∧ ( 𝐶𝐴𝜑 ) ) → 𝑥 = 𝐶 ) ↔ ( 𝑦𝐵 → ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) ) )
44 42 43 bitri ( ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑦𝐵 → ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) ) )
45 44 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦𝐵 → ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) ) )
46 df-ral ( ∀ 𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦𝐵 → ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) ) )
47 45 46 bitr4i ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )
48 35 41 47 3bitr2i ( ∀ 𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∀ 𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )
49 48 eubii ( ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∃! 𝑥𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )
50 34 49 bitri ( ∃! 𝑥𝑧 ∈ { 𝑦𝐵 ∣ ( 𝐶𝐴𝜑 ) } 𝑥 = 𝑧 / 𝑦 𝐶 ↔ ∃! 𝑥𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )
51 1 23 50 3bitri ( ∃! 𝑥𝐴𝑦𝐵 ( 𝜑𝑥 = 𝐶 ) ↔ ∃! 𝑥𝑦𝐵 ( ( 𝐶𝐴𝜑 ) → 𝑥 = 𝐶 ) )