| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexneg |
⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 = - 𝐵 ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → -𝑒 𝐵 = - 𝐵 ) |
| 3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 +𝑒 - 𝐵 ) ) |
| 4 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
| 5 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 7 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 8 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 9 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 11 |
3 6 10
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 − 𝐵 ) ) |