| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmoi.b |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
rmoi.c |
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 4 |
|
simprl |
⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → 𝐵 ∈ 𝐴 ) |
| 5 |
|
eleq1 |
⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 6 |
4 5
|
syl5ibcom |
⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 → 𝐶 ∈ 𝐴 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) → 𝐶 ∈ 𝐴 ) |
| 8 |
7
|
a1i |
⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) → 𝐶 ∈ 𝐴 ) ) |
| 9 |
4
|
anim1i |
⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 10 |
|
simpll |
⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 11 |
|
simplr |
⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 13 |
12 1
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 15 |
14 2
|
anbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 16 |
13 15
|
mob |
⊢ ( ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 17 |
9 10 11 16
|
syl3anc |
⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 18 |
17
|
ex |
⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) ) |
| 19 |
6 8 18
|
pm5.21ndd |
⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 20 |
3 19
|
sylanb |
⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |