| Step |
Hyp |
Ref |
Expression |
| 1 |
|
moi.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
moi.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
elex |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ∈ V |
| 5 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
| 7 |
4 5 6
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐴 = 𝐵 ↔ 𝜒 ) |
| 9 |
7 8
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) |
| 10 |
1
|
3anbi3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) ↔ ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 12 |
11
|
bibi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐵 ↔ 𝜒 ) ↔ ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 13 |
10 12
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) ↔ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 14 |
2
|
mob2 |
⊢ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) |
| 15 |
9 13 14
|
vtoclg1f |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 16 |
15
|
com12 |
⊢ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 17 |
16
|
3expib |
⊢ ( 𝐵 ∈ V → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝐵 ∈ 𝐷 → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 19 |
18
|
com3r |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐵 ∈ 𝐷 → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 20 |
19
|
imp |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 21 |
20
|
3impib |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) |