Metamath Proof Explorer


Theorem mob

Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)

Ref Expression
Hypotheses moi.1 x=Aφψ
moi.2 x=Bφχ
Assertion mob ACBD*xφψA=Bχ

Proof

Step Hyp Ref Expression
1 moi.1 x=Aφψ
2 moi.2 x=Bφχ
3 elex BDBV
4 nfv xBV
5 nfmo1 x*xφ
6 nfv xψ
7 4 5 6 nf3an xBV*xφψ
8 nfv xA=Bχ
9 7 8 nfim xBV*xφψA=Bχ
10 1 3anbi3d x=ABV*xφφBV*xφψ
11 eqeq1 x=Ax=BA=B
12 11 bibi1d x=Ax=BχA=Bχ
13 10 12 imbi12d x=ABV*xφφx=BχBV*xφψA=Bχ
14 2 mob2 BV*xφφx=Bχ
15 9 13 14 vtoclg1f ACBV*xφψA=Bχ
16 15 com12 BV*xφψACA=Bχ
17 16 3expib BV*xφψACA=Bχ
18 3 17 syl BD*xφψACA=Bχ
19 18 com3r ACBD*xφψA=Bχ
20 19 imp ACBD*xφψA=Bχ
21 20 3impib ACBD*xφψA=Bχ