| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmoi.b |
|- ( x = B -> ( ph <-> ps ) ) |
| 2 |
|
rmoi.c |
|- ( x = C -> ( ph <-> ch ) ) |
| 3 |
|
df-rmo |
|- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
| 4 |
|
simprl |
|- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> B e. A ) |
| 5 |
|
eleq1 |
|- ( B = C -> ( B e. A <-> C e. A ) ) |
| 6 |
4 5
|
syl5ibcom |
|- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C -> C e. A ) ) |
| 7 |
|
simpl |
|- ( ( C e. A /\ ch ) -> C e. A ) |
| 8 |
7
|
a1i |
|- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( ( C e. A /\ ch ) -> C e. A ) ) |
| 9 |
4
|
anim1i |
|- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ C e. A ) ) |
| 10 |
|
simpll |
|- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> E* x ( x e. A /\ ph ) ) |
| 11 |
|
simplr |
|- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ ps ) ) |
| 12 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
| 13 |
12 1
|
anbi12d |
|- ( x = B -> ( ( x e. A /\ ph ) <-> ( B e. A /\ ps ) ) ) |
| 14 |
|
eleq1 |
|- ( x = C -> ( x e. A <-> C e. A ) ) |
| 15 |
14 2
|
anbi12d |
|- ( x = C -> ( ( x e. A /\ ph ) <-> ( C e. A /\ ch ) ) ) |
| 16 |
13 15
|
mob |
|- ( ( ( B e. A /\ C e. A ) /\ E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 17 |
9 10 11 16
|
syl3anc |
|- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 18 |
17
|
ex |
|- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( C e. A -> ( B = C <-> ( C e. A /\ ch ) ) ) ) |
| 19 |
6 8 18
|
pm5.21ndd |
|- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 20 |
3 19
|
sylanb |
|- ( ( E* x e. A ph /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |