| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngneglmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rngneglmul.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
rngneglmul.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 4 |
|
rngneglmul.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 5 |
|
rngneglmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
rngneglmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 |
1 3 8 6
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 |
1 2 3 4 5 9
|
rngmneg1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 11 |
1 2 3 4 5 6
|
rngmneg2 |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) = ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) ) |
| 13 |
1 2
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 14 |
4 5 6 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 15 |
1 3
|
grpinvinv |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · 𝑌 ) ) |
| 16 |
8 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · 𝑌 ) ) |
| 17 |
10 12 16
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) ) |