| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngneglmul.b |
|- B = ( Base ` R ) |
| 2 |
|
rngneglmul.t |
|- .x. = ( .r ` R ) |
| 3 |
|
rngneglmul.n |
|- N = ( invg ` R ) |
| 4 |
|
rngneglmul.r |
|- ( ph -> R e. Rng ) |
| 5 |
|
rngneglmul.x |
|- ( ph -> X e. B ) |
| 6 |
|
rngneglmul.y |
|- ( ph -> Y e. B ) |
| 7 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 8 |
4 7
|
syl |
|- ( ph -> R e. Grp ) |
| 9 |
1 3 8 6
|
grpinvcld |
|- ( ph -> ( N ` Y ) e. B ) |
| 10 |
1 2 3 4 5 9
|
rngmneg1 |
|- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( N ` ( X .x. ( N ` Y ) ) ) ) |
| 11 |
1 2 3 4 5 6
|
rngmneg2 |
|- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( N ` ( X .x. ( N ` Y ) ) ) = ( N ` ( N ` ( X .x. Y ) ) ) ) |
| 13 |
1 2
|
rngcl |
|- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 14 |
4 5 6 13
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
| 15 |
1 3
|
grpinvinv |
|- ( ( R e. Grp /\ ( X .x. Y ) e. B ) -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) |
| 16 |
8 14 15
|
syl2anc |
|- ( ph -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) |
| 17 |
10 12 16
|
3eqtrd |
|- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( X .x. Y ) ) |