| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
ringi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
ringi.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
1 2 3
|
rngoi |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑢 𝐻 𝑥 ) 𝐻 𝑦 ) = ( 𝑢 𝐻 ( 𝑥 𝐻 𝑦 ) ) ∧ ( 𝑢 𝐻 ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝑢 𝐻 𝑥 ) 𝐺 ( 𝑢 𝐻 𝑦 ) ) ∧ ( ( 𝑢 𝐺 𝑥 ) 𝐻 𝑦 ) = ( ( 𝑢 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑦 ) ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) ) |
| 5 |
4
|
simprrd |
⊢ ( 𝑅 ∈ RingOps → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 6 |
|
r19.12 |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑢 𝐻 𝑥 ) = ( 𝑢 𝐻 𝐴 ) ) |
| 9 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐻 𝐴 ) = 𝐴 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑢 ) = ( 𝐴 𝐻 𝑢 ) ) |
| 12 |
11 9
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 𝑢 ) = 𝑥 ↔ ( 𝐴 𝐻 𝑢 ) = 𝐴 ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ( ( 𝑢 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑢 ) = 𝐴 ) ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑢 ) = 𝐴 ) ) ) |
| 15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑢 ) = 𝐴 ) ) |
| 16 |
7 15
|
sylan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑢 ) = 𝐴 ) ) |