| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
ringi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
ringi.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
1 2 3
|
rngoi |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑢 𝐻 𝑥 ) 𝐻 𝑦 ) = ( 𝑢 𝐻 ( 𝑥 𝐻 𝑦 ) ) ∧ ( 𝑢 𝐻 ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝑢 𝐻 𝑥 ) 𝐺 ( 𝑢 𝐻 𝑦 ) ) ∧ ( ( 𝑢 𝐺 𝑥 ) 𝐻 𝑦 ) = ( ( 𝑢 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑦 ) ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) ) |
| 5 |
4
|
simprrd |
⊢ ( 𝑅 ∈ RingOps → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 6 |
|
simpl |
⊢ ( ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ( 𝑢 𝐻 𝑥 ) = 𝑥 ) |
| 7 |
6
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐻 𝑥 ) = 𝑥 ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑢 𝐻 𝑥 ) = ( 𝑢 𝐻 𝑦 ) ) |
| 9 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 11 |
10
|
rspcv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐻 𝑥 ) = 𝑥 → ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 12 |
7 11
|
syl5 |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ( 𝑥 𝐻 𝑦 ) = 𝑥 ) |
| 14 |
13
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) = 𝑥 ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 𝐻 𝑦 ) = ( 𝑢 𝐻 𝑦 ) ) |
| 16 |
|
id |
⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 𝐻 𝑦 ) = 𝑥 ↔ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 18 |
17
|
rspcv |
⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) = 𝑥 → ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 19 |
14 18
|
syl5 |
⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 20 |
12 19
|
im2anan9r |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) ) |
| 21 |
|
eqtr2 |
⊢ ( ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) → 𝑦 = 𝑢 ) |
| 22 |
21
|
equcomd |
⊢ ( ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) → 𝑢 = 𝑦 ) |
| 23 |
20 22
|
syl6 |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) |
| 24 |
23
|
rgen2 |
⊢ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) |
| 25 |
|
oveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑦 𝐻 𝑥 ) = 𝑥 ) ) |
| 27 |
26
|
ovanraleqv |
⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) ) |
| 28 |
27
|
reu4 |
⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) ) |
| 29 |
5 24 28
|
sylanblrc |
⊢ ( 𝑅 ∈ RingOps → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |