Metamath Proof Explorer


Theorem rngoid

Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngoid RRingOpsAXuXuHA=AAHu=A

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoi RRingOpsGAbelOpH:X×XXuXxXyXuHxHy=uHxHyuHxGy=uHxGuHyuGxHy=uHyGxHyuXxXuHx=xxHu=x
5 4 simprrd RRingOpsuXxXuHx=xxHu=x
6 r19.12 uXxXuHx=xxHu=xxXuXuHx=xxHu=x
7 5 6 syl RRingOpsxXuXuHx=xxHu=x
8 oveq2 x=AuHx=uHA
9 id x=Ax=A
10 8 9 eqeq12d x=AuHx=xuHA=A
11 oveq1 x=AxHu=AHu
12 11 9 eqeq12d x=AxHu=xAHu=A
13 10 12 anbi12d x=AuHx=xxHu=xuHA=AAHu=A
14 13 rexbidv x=AuXuHx=xxHu=xuXuHA=AAHu=A
15 14 rspccva xXuXuHx=xxHu=xAXuXuHA=AAHu=A
16 7 15 sylan RRingOpsAXuXuHA=AAHu=A