Step |
Hyp |
Ref |
Expression |
1 |
|
conax1 |
⊢ ( ¬ ( 𝜑 → 𝜓 ) → ¬ 𝜓 ) |
2 |
1
|
pm2.21d |
⊢ ( ¬ ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) |
3 |
2
|
a1d |
⊢ ( ¬ ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
4 |
|
ax-1 |
⊢ ( 𝜒 → ( 𝜓 → 𝜒 ) ) |
5 |
4
|
a1d |
⊢ ( 𝜒 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
6 |
3 5
|
ja |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
7 |
|
ax-2 |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
8 |
7
|
com3r |
⊢ ( 𝜑 → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) ) |
9 |
6 8
|
impbid2 |
⊢ ( 𝜑 → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
10 |
|
ax-1 |
⊢ ( 𝜒 → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) |
11 |
10 5
|
2thd |
⊢ ( 𝜒 → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
12 |
9 11
|
jaoi |
⊢ ( ( 𝜑 ∨ 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
13 |
|
jarl |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ¬ 𝜑 → 𝜒 ) ) |
14 |
13
|
orrd |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) |
15 |
14
|
a1d |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |
16 |
|
simplim |
⊢ ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → 𝜑 ) |
17 |
16
|
orcd |
⊢ ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) |
18 |
17
|
a1i |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |
19 |
15 18
|
bija |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( 𝜑 ∨ 𝜒 ) ) |
20 |
12 19
|
impbii |
⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |