Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.521g |
⊢ ( ¬ ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) |
2 |
1
|
a1d |
⊢ ( ¬ ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
3 |
|
ax-1 |
⊢ ( 𝜒 → ( 𝜓 → 𝜒 ) ) |
4 |
3
|
a1d |
⊢ ( 𝜒 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
5 |
2 4
|
ja |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
6 |
|
ax-2 |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
7 |
6
|
com3r |
⊢ ( 𝜑 → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) ) |
8 |
5 7
|
impbid2 |
⊢ ( 𝜑 → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
9 |
|
ax-1 |
⊢ ( 𝜒 → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) |
10 |
9 4
|
2thd |
⊢ ( 𝜒 → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
11 |
8 10
|
jaoi |
⊢ ( ( 𝜑 ∨ 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
12 |
|
jarl |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ¬ 𝜑 → 𝜒 ) ) |
13 |
12
|
orrd |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) |
14 |
13
|
a1d |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |
15 |
|
simplim |
⊢ ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → 𝜑 ) |
16 |
15
|
orcd |
⊢ ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) |
17 |
16
|
a1i |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ¬ ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |
18 |
14 17
|
bija |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( 𝜑 ∨ 𝜒 ) ) |
19 |
11 18
|
impbii |
⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |