Metamath Proof Explorer


Theorem rp-fakeimass

Description: A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeimass ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2.521g ( ¬ ( 𝜑𝜓 ) → ( 𝜓𝜒 ) )
2 1 a1d ( ¬ ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
3 ax-1 ( 𝜒 → ( 𝜓𝜒 ) )
4 3 a1d ( 𝜒 → ( 𝜑 → ( 𝜓𝜒 ) ) )
5 2 4 ja ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
6 ax-2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
7 6 com3r ( 𝜑 → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) )
8 5 7 impbid2 ( 𝜑 → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
9 ax-1 ( 𝜒 → ( ( 𝜑𝜓 ) → 𝜒 ) )
10 9 4 2thd ( 𝜒 → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
11 8 10 jaoi ( ( 𝜑𝜒 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
12 jarl ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ¬ 𝜑𝜒 ) )
13 12 orrd ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜒 ) )
14 13 a1d ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
15 simplim ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → 𝜑 )
16 15 orcd ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) )
17 16 a1i ( ¬ ( ( 𝜑𝜓 ) → 𝜒 ) → ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
18 14 17 bija ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( 𝜑𝜒 ) )
19 11 18 impbii ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )