Metamath Proof Explorer


Theorem rp-fakeimass

Description: A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeimass ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 conax1 ( ¬ ( 𝜑𝜓 ) → ¬ 𝜓 )
2 1 pm2.21d ( ¬ ( 𝜑𝜓 ) → ( 𝜓𝜒 ) )
3 2 a1d ( ¬ ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
4 ax-1 ( 𝜒 → ( 𝜓𝜒 ) )
5 4 a1d ( 𝜒 → ( 𝜑 → ( 𝜓𝜒 ) ) )
6 3 5 ja ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
7 ax-2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
8 7 com3r ( 𝜑 → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) )
9 6 8 impbid2 ( 𝜑 → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
10 ax-1 ( 𝜒 → ( ( 𝜑𝜓 ) → 𝜒 ) )
11 10 5 2thd ( 𝜒 → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
12 9 11 jaoi ( ( 𝜑𝜒 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )
13 jarl ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ¬ 𝜑𝜒 ) )
14 13 orrd ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜒 ) )
15 14 a1d ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
16 simplim ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → 𝜑 )
17 16 orcd ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) )
18 17 a1i ( ¬ ( ( 𝜑𝜓 ) → 𝜒 ) → ( ¬ ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
19 15 18 bija ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( 𝜑𝜒 ) )
20 12 19 impbii ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) )