Step |
Hyp |
Ref |
Expression |
1 |
|
pm1.4 |
⊢ ( ( 𝜑 ∨ 𝜒 ) → ( 𝜒 ∨ 𝜑 ) ) |
2 |
1
|
ord |
⊢ ( ( 𝜑 ∨ 𝜒 ) → ( ¬ 𝜒 → 𝜑 ) ) |
3 |
|
pm4.83 |
⊢ ( ( ( 𝜒 → 𝜑 ) ∧ ( ¬ 𝜒 → 𝜑 ) ) ↔ 𝜑 ) |
4 |
3
|
biimpi |
⊢ ( ( ( 𝜒 → 𝜑 ) ∧ ( ¬ 𝜒 → 𝜑 ) ) → 𝜑 ) |
5 |
2 4
|
sylan2 |
⊢ ( ( ( 𝜒 → 𝜑 ) ∧ ( 𝜑 ∨ 𝜒 ) ) → 𝜑 ) |
6 |
5
|
ex |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( 𝜑 ∨ 𝜒 ) → 𝜑 ) ) |
7 |
6
|
anim1d |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
8 |
|
orc |
⊢ ( 𝜑 → ( 𝜑 ∨ 𝜒 ) ) |
9 |
8
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
10 |
7 9
|
jctir |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ∧ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) ) |
11 |
|
olc |
⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ) ) |
12 |
|
olc |
⊢ ( 𝜒 → ( 𝜓 ∨ 𝜒 ) ) |
13 |
11 12
|
jca |
⊢ ( 𝜒 → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → 𝜑 ) |
15 |
13 14
|
imim12i |
⊢ ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) → ( 𝜒 → 𝜑 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ∧ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) → ( 𝜒 → 𝜑 ) ) |
17 |
10 16
|
impbii |
⊢ ( ( 𝜒 → 𝜑 ) ↔ ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ∧ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) ) |
18 |
|
dfbi2 |
⊢ ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ↔ ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ∧ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) ) |
19 |
|
ordir |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
20 |
19
|
bicomi |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ) |
21 |
20
|
bibi1i |
⊢ ( ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
22 |
17 18 21
|
3bitr2i |
⊢ ( ( 𝜒 → 𝜑 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |