Step |
Hyp |
Ref |
Expression |
1 |
|
rp-fakeanorass |
⊢ ( ( 𝜑 → 𝜒 ) ↔ ( ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ) ) |
2 |
|
bicom |
⊢ ( ( ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ) ↔ ( ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ) ) |
3 |
|
orcom |
⊢ ( ( 𝜓 ∨ 𝜑 ) ↔ ( 𝜑 ∨ 𝜓 ) ) |
4 |
3
|
anbi1ci |
⊢ ( ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) |
5 |
|
orcom |
⊢ ( ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ↔ ( 𝜑 ∨ ( 𝜒 ∧ 𝜓 ) ) ) |
6 |
|
ancom |
⊢ ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
7 |
6
|
orbi2i |
⊢ ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜓 ) ) ↔ ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
8 |
5 7
|
bitri |
⊢ ( ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ↔ ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
9 |
4 8
|
bibi12i |
⊢ ( ( ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
10 |
2 9
|
bitri |
⊢ ( ( ( ( 𝜒 ∧ 𝜓 ) ∨ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝜓 ∨ 𝜑 ) ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
11 |
1 10
|
bitri |
⊢ ( ( 𝜑 → 𝜒 ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |