| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rp-fakeanorass | ⊢ ( ( 𝜑  →  𝜒 )  ↔  ( ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 )  ↔  ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) ) ) ) | 
						
							| 2 |  | bicom | ⊢ ( ( ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 )  ↔  ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) ) )  ↔  ( ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) )  ↔  ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 ) ) ) | 
						
							| 3 |  | orcom | ⊢ ( ( 𝜓  ∨  𝜑 )  ↔  ( 𝜑  ∨  𝜓 ) ) | 
						
							| 4 | 3 | anbi1ci | ⊢ ( ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) )  ↔  ( ( 𝜑  ∨  𝜓 )  ∧  𝜒 ) ) | 
						
							| 5 |  | orcom | ⊢ ( ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 )  ↔  ( 𝜑  ∨  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 6 |  | ancom | ⊢ ( ( 𝜒  ∧  𝜓 )  ↔  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 7 | 6 | orbi2i | ⊢ ( ( 𝜑  ∨  ( 𝜒  ∧  𝜓 ) )  ↔  ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 8 | 5 7 | bitri | ⊢ ( ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 )  ↔  ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 9 | 4 8 | bibi12i | ⊢ ( ( ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) )  ↔  ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 ) )  ↔  ( ( ( 𝜑  ∨  𝜓 )  ∧  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 10 | 2 9 | bitri | ⊢ ( ( ( ( 𝜒  ∧  𝜓 )  ∨  𝜑 )  ↔  ( 𝜒  ∧  ( 𝜓  ∨  𝜑 ) ) )  ↔  ( ( ( 𝜑  ∨  𝜓 )  ∧  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 11 | 1 10 | bitri | ⊢ ( ( 𝜑  →  𝜒 )  ↔  ( ( ( 𝜑  ∨  𝜓 )  ∧  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) ) ) ) |