Metamath Proof Explorer


Theorem rp-fakeoranass

Description: A special case where a mixture of or and and appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeoranass
|- ( ( ph -> ch ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) )

Proof

Step Hyp Ref Expression
1 rp-fakeanorass
 |-  ( ( ph -> ch ) <-> ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) )
2 bicom
 |-  ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) )
3 orcom
 |-  ( ( ps \/ ph ) <-> ( ph \/ ps ) )
4 3 anbi1ci
 |-  ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ph \/ ps ) /\ ch ) )
5 orcom
 |-  ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ch /\ ps ) ) )
6 ancom
 |-  ( ( ch /\ ps ) <-> ( ps /\ ch ) )
7 6 orbi2i
 |-  ( ( ph \/ ( ch /\ ps ) ) <-> ( ph \/ ( ps /\ ch ) ) )
8 5 7 bitri
 |-  ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ps /\ ch ) ) )
9 4 8 bibi12i
 |-  ( ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) )
10 2 9 bitri
 |-  ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) )
11 1 10 bitri
 |-  ( ( ph -> ch ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) )