| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rp-fakeanorass |  |-  ( ( ph -> ch ) <-> ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) ) | 
						
							| 2 |  | bicom |  |-  ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) ) | 
						
							| 3 |  | orcom |  |-  ( ( ps \/ ph ) <-> ( ph \/ ps ) ) | 
						
							| 4 | 3 | anbi1ci |  |-  ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ph \/ ps ) /\ ch ) ) | 
						
							| 5 |  | orcom |  |-  ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ch /\ ps ) ) ) | 
						
							| 6 |  | ancom |  |-  ( ( ch /\ ps ) <-> ( ps /\ ch ) ) | 
						
							| 7 | 6 | orbi2i |  |-  ( ( ph \/ ( ch /\ ps ) ) <-> ( ph \/ ( ps /\ ch ) ) ) | 
						
							| 8 | 5 7 | bitri |  |-  ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ps /\ ch ) ) ) | 
						
							| 9 | 4 8 | bibi12i |  |-  ( ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) | 
						
							| 10 | 2 9 | bitri |  |-  ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) | 
						
							| 11 | 1 10 | bitri |  |-  ( ( ph -> ch ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) |