Step |
Hyp |
Ref |
Expression |
1 |
|
rp-fakeanorass |
|- ( ( ph -> ch ) <-> ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) ) |
2 |
|
bicom |
|- ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) ) |
3 |
|
orcom |
|- ( ( ps \/ ph ) <-> ( ph \/ ps ) ) |
4 |
3
|
anbi1ci |
|- ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ph \/ ps ) /\ ch ) ) |
5 |
|
orcom |
|- ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ch /\ ps ) ) ) |
6 |
|
ancom |
|- ( ( ch /\ ps ) <-> ( ps /\ ch ) ) |
7 |
6
|
orbi2i |
|- ( ( ph \/ ( ch /\ ps ) ) <-> ( ph \/ ( ps /\ ch ) ) ) |
8 |
5 7
|
bitri |
|- ( ( ( ch /\ ps ) \/ ph ) <-> ( ph \/ ( ps /\ ch ) ) ) |
9 |
4 8
|
bibi12i |
|- ( ( ( ch /\ ( ps \/ ph ) ) <-> ( ( ch /\ ps ) \/ ph ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) |
10 |
2 9
|
bitri |
|- ( ( ( ( ch /\ ps ) \/ ph ) <-> ( ch /\ ( ps \/ ph ) ) ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) |
11 |
1 10
|
bitri |
|- ( ( ph -> ch ) <-> ( ( ( ph \/ ps ) /\ ch ) <-> ( ph \/ ( ps /\ ch ) ) ) ) |