Step |
Hyp |
Ref |
Expression |
1 |
|
pm1.4 |
|- ( ( ph \/ ch ) -> ( ch \/ ph ) ) |
2 |
1
|
ord |
|- ( ( ph \/ ch ) -> ( -. ch -> ph ) ) |
3 |
|
pm4.83 |
|- ( ( ( ch -> ph ) /\ ( -. ch -> ph ) ) <-> ph ) |
4 |
3
|
biimpi |
|- ( ( ( ch -> ph ) /\ ( -. ch -> ph ) ) -> ph ) |
5 |
2 4
|
sylan2 |
|- ( ( ( ch -> ph ) /\ ( ph \/ ch ) ) -> ph ) |
6 |
5
|
ex |
|- ( ( ch -> ph ) -> ( ( ph \/ ch ) -> ph ) ) |
7 |
6
|
anim1d |
|- ( ( ch -> ph ) -> ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) ) |
8 |
|
orc |
|- ( ph -> ( ph \/ ch ) ) |
9 |
8
|
anim1i |
|- ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) |
10 |
7 9
|
jctir |
|- ( ( ch -> ph ) -> ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) /\ ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) ) ) |
11 |
|
olc |
|- ( ch -> ( ph \/ ch ) ) |
12 |
|
olc |
|- ( ch -> ( ps \/ ch ) ) |
13 |
11 12
|
jca |
|- ( ch -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) |
14 |
|
simpl |
|- ( ( ph /\ ( ps \/ ch ) ) -> ph ) |
15 |
13 14
|
imim12i |
|- ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) -> ( ch -> ph ) ) |
16 |
15
|
adantr |
|- ( ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) /\ ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) ) -> ( ch -> ph ) ) |
17 |
10 16
|
impbii |
|- ( ( ch -> ph ) <-> ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) /\ ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) ) ) |
18 |
|
dfbi2 |
|- ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ph /\ ( ps \/ ch ) ) ) <-> ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) -> ( ph /\ ( ps \/ ch ) ) ) /\ ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) ) ) |
19 |
|
ordir |
|- ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) ) |
20 |
19
|
bicomi |
|- ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ch ) ) |
21 |
20
|
bibi1i |
|- ( ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ph /\ ( ps \/ ch ) ) ) <-> ( ( ( ph /\ ps ) \/ ch ) <-> ( ph /\ ( ps \/ ch ) ) ) ) |
22 |
17 18 21
|
3bitr2i |
|- ( ( ch -> ph ) <-> ( ( ( ph /\ ps ) \/ ch ) <-> ( ph /\ ( ps \/ ch ) ) ) ) |