| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2.521g |
|- ( -. ( ph -> ps ) -> ( ps -> ch ) ) |
| 2 |
1
|
a1d |
|- ( -. ( ph -> ps ) -> ( ph -> ( ps -> ch ) ) ) |
| 3 |
|
ax-1 |
|- ( ch -> ( ps -> ch ) ) |
| 4 |
3
|
a1d |
|- ( ch -> ( ph -> ( ps -> ch ) ) ) |
| 5 |
2 4
|
ja |
|- ( ( ( ph -> ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) ) |
| 6 |
|
ax-2 |
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
| 7 |
6
|
com3r |
|- ( ph -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) ) |
| 8 |
5 7
|
impbid2 |
|- ( ph -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
| 9 |
|
ax-1 |
|- ( ch -> ( ( ph -> ps ) -> ch ) ) |
| 10 |
9 4
|
2thd |
|- ( ch -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
| 11 |
8 10
|
jaoi |
|- ( ( ph \/ ch ) -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
| 12 |
|
jarl |
|- ( ( ( ph -> ps ) -> ch ) -> ( -. ph -> ch ) ) |
| 13 |
12
|
orrd |
|- ( ( ( ph -> ps ) -> ch ) -> ( ph \/ ch ) ) |
| 14 |
13
|
a1d |
|- ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) ) |
| 15 |
|
simplim |
|- ( -. ( ph -> ( ps -> ch ) ) -> ph ) |
| 16 |
15
|
orcd |
|- ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) |
| 17 |
16
|
a1i |
|- ( -. ( ( ph -> ps ) -> ch ) -> ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) ) |
| 18 |
14 17
|
bija |
|- ( ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) -> ( ph \/ ch ) ) |
| 19 |
11 18
|
impbii |
|- ( ( ph \/ ch ) <-> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |