Step |
Hyp |
Ref |
Expression |
1 |
|
conax1 |
|- ( -. ( ph -> ps ) -> -. ps ) |
2 |
1
|
pm2.21d |
|- ( -. ( ph -> ps ) -> ( ps -> ch ) ) |
3 |
2
|
a1d |
|- ( -. ( ph -> ps ) -> ( ph -> ( ps -> ch ) ) ) |
4 |
|
ax-1 |
|- ( ch -> ( ps -> ch ) ) |
5 |
4
|
a1d |
|- ( ch -> ( ph -> ( ps -> ch ) ) ) |
6 |
3 5
|
ja |
|- ( ( ( ph -> ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) ) |
7 |
|
ax-2 |
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
8 |
7
|
com3r |
|- ( ph -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) ) |
9 |
6 8
|
impbid2 |
|- ( ph -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
10 |
|
ax-1 |
|- ( ch -> ( ( ph -> ps ) -> ch ) ) |
11 |
10 5
|
2thd |
|- ( ch -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
12 |
9 11
|
jaoi |
|- ( ( ph \/ ch ) -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |
13 |
|
jarl |
|- ( ( ( ph -> ps ) -> ch ) -> ( -. ph -> ch ) ) |
14 |
13
|
orrd |
|- ( ( ( ph -> ps ) -> ch ) -> ( ph \/ ch ) ) |
15 |
14
|
a1d |
|- ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) ) |
16 |
|
simplim |
|- ( -. ( ph -> ( ps -> ch ) ) -> ph ) |
17 |
16
|
orcd |
|- ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) |
18 |
17
|
a1i |
|- ( -. ( ( ph -> ps ) -> ch ) -> ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) ) |
19 |
15 18
|
bija |
|- ( ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) -> ( ph \/ ch ) ) |
20 |
12 19
|
impbii |
|- ( ( ph \/ ch ) <-> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) ) |