Metamath Proof Explorer


Theorem rp-fakeimass

Description: A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeimass
|- ( ( ph \/ ch ) <-> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2.521g
 |-  ( -. ( ph -> ps ) -> ( ps -> ch ) )
2 1 a1d
 |-  ( -. ( ph -> ps ) -> ( ph -> ( ps -> ch ) ) )
3 ax-1
 |-  ( ch -> ( ps -> ch ) )
4 3 a1d
 |-  ( ch -> ( ph -> ( ps -> ch ) ) )
5 2 4 ja
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) )
6 ax-2
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
7 6 com3r
 |-  ( ph -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) )
8 5 7 impbid2
 |-  ( ph -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) )
9 ax-1
 |-  ( ch -> ( ( ph -> ps ) -> ch ) )
10 9 4 2thd
 |-  ( ch -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) )
11 8 10 jaoi
 |-  ( ( ph \/ ch ) -> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) )
12 jarl
 |-  ( ( ( ph -> ps ) -> ch ) -> ( -. ph -> ch ) )
13 12 orrd
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ph \/ ch ) )
14 13 a1d
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) )
15 simplim
 |-  ( -. ( ph -> ( ps -> ch ) ) -> ph )
16 15 orcd
 |-  ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) )
17 16 a1i
 |-  ( -. ( ( ph -> ps ) -> ch ) -> ( -. ( ph -> ( ps -> ch ) ) -> ( ph \/ ch ) ) )
18 14 17 bija
 |-  ( ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) -> ( ph \/ ch ) )
19 11 18 impbii
 |-  ( ( ph \/ ch ) <-> ( ( ( ph -> ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) ) )