Metamath Proof Explorer


Theorem rp-fakeuninass

Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeuninass ( 𝐴𝐶 ↔ ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rp-fakeinunass ( 𝐴𝐶 ↔ ( ( 𝐶𝐵 ) ∪ 𝐴 ) = ( 𝐶 ∩ ( 𝐵𝐴 ) ) )
2 eqcom ( ( ( 𝐶𝐵 ) ∪ 𝐴 ) = ( 𝐶 ∩ ( 𝐵𝐴 ) ) ↔ ( 𝐶 ∩ ( 𝐵𝐴 ) ) = ( ( 𝐶𝐵 ) ∪ 𝐴 ) )
3 incom ( 𝐶 ∩ ( 𝐵𝐴 ) ) = ( ( 𝐵𝐴 ) ∩ 𝐶 )
4 uncom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
5 4 ineq1i ( ( 𝐵𝐴 ) ∩ 𝐶 ) = ( ( 𝐴𝐵 ) ∩ 𝐶 )
6 3 5 eqtri ( 𝐶 ∩ ( 𝐵𝐴 ) ) = ( ( 𝐴𝐵 ) ∩ 𝐶 )
7 uncom ( ( 𝐶𝐵 ) ∪ 𝐴 ) = ( 𝐴 ∪ ( 𝐶𝐵 ) )
8 incom ( 𝐶𝐵 ) = ( 𝐵𝐶 )
9 8 uneq2i ( 𝐴 ∪ ( 𝐶𝐵 ) ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )
10 7 9 eqtri ( ( 𝐶𝐵 ) ∪ 𝐴 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )
11 6 10 eqeq12i ( ( 𝐶 ∩ ( 𝐵𝐴 ) ) = ( ( 𝐶𝐵 ) ∪ 𝐴 ) ↔ ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) ) )
12 1 2 11 3bitri ( 𝐴𝐶 ↔ ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) ) )