Step |
Hyp |
Ref |
Expression |
1 |
|
rp-fakeinunass |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) ) |
2 |
|
eqcom |
⊢ ( ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) ↔ ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) = ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) ) |
3 |
|
incom |
⊢ ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) = ( ( 𝐵 ∪ 𝐴 ) ∩ 𝐶 ) |
4 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
5 |
4
|
ineq1i |
⊢ ( ( 𝐵 ∪ 𝐴 ) ∩ 𝐶 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐶 ) |
6 |
3 5
|
eqtri |
⊢ ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐶 ) |
7 |
|
uncom |
⊢ ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) = ( 𝐴 ∪ ( 𝐶 ∩ 𝐵 ) ) |
8 |
|
incom |
⊢ ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) |
9 |
8
|
uneq2i |
⊢ ( 𝐴 ∪ ( 𝐶 ∩ 𝐵 ) ) = ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) |
10 |
7 9
|
eqtri |
⊢ ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) = ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) |
11 |
6 10
|
eqeq12i |
⊢ ( ( 𝐶 ∩ ( 𝐵 ∪ 𝐴 ) ) = ( ( 𝐶 ∩ 𝐵 ) ∪ 𝐴 ) ↔ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) ) |
12 |
1 2 11
|
3bitri |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) ) |