| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rp-fakeinunass | ⊢ ( 𝐴  ⊆  𝐶  ↔  ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) ) ) | 
						
							| 2 |  | eqcom | ⊢ ( ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) )  ↔  ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) )  =  ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 ) ) | 
						
							| 3 |  | incom | ⊢ ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) )  =  ( ( 𝐵  ∪  𝐴 )  ∩  𝐶 ) | 
						
							| 4 |  | uncom | ⊢ ( 𝐵  ∪  𝐴 )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 5 | 4 | ineq1i | ⊢ ( ( 𝐵  ∪  𝐴 )  ∩  𝐶 )  =  ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 ) | 
						
							| 6 | 3 5 | eqtri | ⊢ ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 ) | 
						
							| 7 |  | uncom | ⊢ ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 )  =  ( 𝐴  ∪  ( 𝐶  ∩  𝐵 ) ) | 
						
							| 8 |  | incom | ⊢ ( 𝐶  ∩  𝐵 )  =  ( 𝐵  ∩  𝐶 ) | 
						
							| 9 | 8 | uneq2i | ⊢ ( 𝐴  ∪  ( 𝐶  ∩  𝐵 ) )  =  ( 𝐴  ∪  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 10 | 7 9 | eqtri | ⊢ ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 )  =  ( 𝐴  ∪  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 11 | 6 10 | eqeq12i | ⊢ ( ( 𝐶  ∩  ( 𝐵  ∪  𝐴 ) )  =  ( ( 𝐶  ∩  𝐵 )  ∪  𝐴 )  ↔  ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ( 𝐴  ∪  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 12 | 1 2 11 | 3bitri | ⊢ ( 𝐴  ⊆  𝐶  ↔  ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ( 𝐴  ∪  ( 𝐵  ∩  𝐶 ) ) ) |