Metamath Proof Explorer


Theorem rp-fakeuninass

Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020)

Ref Expression
Assertion rp-fakeuninass
|- ( A C_ C <-> ( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) )

Proof

Step Hyp Ref Expression
1 rp-fakeinunass
 |-  ( A C_ C <-> ( ( C i^i B ) u. A ) = ( C i^i ( B u. A ) ) )
2 eqcom
 |-  ( ( ( C i^i B ) u. A ) = ( C i^i ( B u. A ) ) <-> ( C i^i ( B u. A ) ) = ( ( C i^i B ) u. A ) )
3 incom
 |-  ( C i^i ( B u. A ) ) = ( ( B u. A ) i^i C )
4 uncom
 |-  ( B u. A ) = ( A u. B )
5 4 ineq1i
 |-  ( ( B u. A ) i^i C ) = ( ( A u. B ) i^i C )
6 3 5 eqtri
 |-  ( C i^i ( B u. A ) ) = ( ( A u. B ) i^i C )
7 uncom
 |-  ( ( C i^i B ) u. A ) = ( A u. ( C i^i B ) )
8 incom
 |-  ( C i^i B ) = ( B i^i C )
9 8 uneq2i
 |-  ( A u. ( C i^i B ) ) = ( A u. ( B i^i C ) )
10 7 9 eqtri
 |-  ( ( C i^i B ) u. A ) = ( A u. ( B i^i C ) )
11 6 10 eqeq12i
 |-  ( ( C i^i ( B u. A ) ) = ( ( C i^i B ) u. A ) <-> ( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) )
12 1 2 11 3bitri
 |-  ( A C_ C <-> ( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) )