| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 2 |
|
nnex |
⊢ ℕ ∈ V |
| 3 |
2
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ ) |
| 4 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴 ) ) |
| 5 |
4
|
ifbid |
⊢ ( 𝑥 = 𝐴 → if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) |
| 6 |
5
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 7 |
2
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ∈ V |
| 8 |
6 1 7
|
fvmpt |
⊢ ( 𝐴 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 9 |
3 8
|
sylbir |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
|
3nn |
⊢ 3 ∈ ℕ |
| 12 |
|
nndivre |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) |
| 13 |
10 11 12
|
mp2an |
⊢ ( 1 / 3 ) ∈ ℝ |
| 14 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 15 |
|
reexpcl |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ) |
| 16 |
13 14 15
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ) |
| 17 |
|
0re |
⊢ 0 ∈ ℝ |
| 18 |
|
ifcl |
⊢ ( ( ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) |
| 19 |
16 17 18
|
sylancl |
⊢ ( 𝑛 ∈ ℕ → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) |
| 21 |
9 20
|
fmpt3d |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |