Metamath Proof Explorer


Theorem rspesbcd

Description: Restricted quantifier version of spesbcd . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses rspesbcd.1 ( 𝜑𝐴𝐵 )
rspesbcd.2 ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 )
Assertion rspesbcd ( 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rspesbcd.1 ( 𝜑𝐴𝐵 )
2 rspesbcd.2 ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 )
3 sbcel1v ( [ 𝐴 / 𝑥 ] 𝑥𝐵𝐴𝐵 )
4 1 3 sylibr ( 𝜑[ 𝐴 / 𝑥 ] 𝑥𝐵 )
5 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑥𝐵𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑥𝐵[ 𝐴 / 𝑥 ] 𝜓 ) )
6 4 2 5 sylanbrc ( 𝜑[ 𝐴 / 𝑥 ] ( 𝑥𝐵𝜓 ) )
7 6 spesbcd ( 𝜑 → ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
8 df-rex ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
9 7 8 sylibr ( 𝜑 → ∃ 𝑥𝐵 𝜓 )