Metamath Proof Explorer


Theorem rspesbcd

Description: Restricted quantifier version of spesbcd . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses rspesbcd.1
|- ( ph -> A e. B )
rspesbcd.2
|- ( ph -> [. A / x ]. ps )
Assertion rspesbcd
|- ( ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rspesbcd.1
 |-  ( ph -> A e. B )
2 rspesbcd.2
 |-  ( ph -> [. A / x ]. ps )
3 sbcel1v
 |-  ( [. A / x ]. x e. B <-> A e. B )
4 1 3 sylibr
 |-  ( ph -> [. A / x ]. x e. B )
5 sbcan
 |-  ( [. A / x ]. ( x e. B /\ ps ) <-> ( [. A / x ]. x e. B /\ [. A / x ]. ps ) )
6 4 2 5 sylanbrc
 |-  ( ph -> [. A / x ]. ( x e. B /\ ps ) )
7 6 spesbcd
 |-  ( ph -> E. x ( x e. B /\ ps ) )
8 df-rex
 |-  ( E. x e. B ps <-> E. x ( x e. B /\ ps ) )
9 7 8 sylibr
 |-  ( ph -> E. x e. B ps )