Metamath Proof Explorer


Theorem rspesbcd

Description: Restricted quantifier version of spesbcd . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses rspesbcd.1 φ A B
rspesbcd.2 φ [˙A / x]˙ ψ
Assertion rspesbcd φ x B ψ

Proof

Step Hyp Ref Expression
1 rspesbcd.1 φ A B
2 rspesbcd.2 φ [˙A / x]˙ ψ
3 sbcel1v [˙A / x]˙ x B A B
4 1 3 sylibr φ [˙A / x]˙ x B
5 sbcan [˙A / x]˙ x B ψ [˙A / x]˙ x B [˙A / x]˙ ψ
6 4 2 5 sylanbrc φ [˙A / x]˙ x B ψ
7 6 spesbcd φ x x B ψ
8 df-rex x B ψ x x B ψ
9 7 8 sylibr φ x B ψ