Step |
Hyp |
Ref |
Expression |
1 |
|
saddisj.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
saddisj.2 |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
saddisj.3 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
4 |
|
saddisjlem.c |
⊢ 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
5 |
|
saddisjlem.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
1 2 4 5
|
sadval |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 sadd 𝐵 ) ↔ hadd ( 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 0 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑥 = 0 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 0 ) ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = 0 → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( 𝐶 ‘ 0 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ) ↔ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 0 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑘 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑥 = 𝑘 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) |
13 |
12
|
notbid |
⊢ ( 𝑥 = 𝑘 → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ) ↔ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) |
17 |
16
|
notbid |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ) ↔ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑁 ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝑥 = 𝑁 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
21 |
20
|
notbid |
⊢ ( 𝑥 = 𝑁 → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑥 ) ) ↔ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) ) |
23 |
1 2 4
|
sadc0 |
⊢ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 0 ) ) |
24 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
25 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → 𝐴 ⊆ ℕ0 ) |
26 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → 𝐵 ⊆ ℕ0 ) |
27 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) |
28 |
25 26 4 27
|
sadcp1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ cadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) ) |
29 |
|
cad0 |
⊢ ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) → ( cadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( cadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
31 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
32 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
33 |
32
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑘 ∈ ∅ ) ) |
34 |
31 33
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ 𝑘 ∈ ∅ ) ) |
35 |
28 30 34
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ 𝑘 ∈ ∅ ) ) |
36 |
24 35
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) |
37 |
36
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) → ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) |
38 |
37
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝜑 → ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) → ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) ) |
39 |
38
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) → ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) ) |
40 |
10 14 18 22 23 39
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
41 |
5 40
|
mpcom |
⊢ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) |
42 |
|
hadrot |
⊢ ( hadd ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) , 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 ) ↔ hadd ( 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
43 |
|
had0 |
⊢ ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) → ( hadd ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) , 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ) ) |
44 |
42 43
|
bitr3id |
⊢ ( ¬ ∅ ∈ ( 𝐶 ‘ 𝑁 ) → ( hadd ( 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ) ) |
45 |
41 44
|
syl |
⊢ ( 𝜑 → ( hadd ( 𝑁 ∈ 𝐴 , 𝑁 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ) ) |
46 |
|
noel |
⊢ ¬ 𝑁 ∈ ∅ |
47 |
|
elin |
⊢ ( 𝑁 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∧ 𝑁 ∈ 𝐵 ) ) |
48 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑁 ∈ ∅ ) ) |
49 |
47 48
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑁 ∈ 𝐴 ∧ 𝑁 ∈ 𝐵 ) ↔ 𝑁 ∈ ∅ ) ) |
50 |
46 49
|
mtbiri |
⊢ ( 𝜑 → ¬ ( 𝑁 ∈ 𝐴 ∧ 𝑁 ∈ 𝐵 ) ) |
51 |
|
xor2 |
⊢ ( ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ 𝐴 ∨ 𝑁 ∈ 𝐵 ) ∧ ¬ ( 𝑁 ∈ 𝐴 ∧ 𝑁 ∈ 𝐵 ) ) ) |
52 |
51
|
rbaib |
⊢ ( ¬ ( 𝑁 ∈ 𝐴 ∧ 𝑁 ∈ 𝐵 ) → ( ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∨ 𝑁 ∈ 𝐵 ) ) ) |
53 |
50 52
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∨ 𝑁 ∈ 𝐵 ) ) ) |
54 |
|
elun |
⊢ ( 𝑁 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∨ 𝑁 ∈ 𝐵 ) ) |
55 |
53 54
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑁 ∈ 𝐴 ⊻ 𝑁 ∈ 𝐵 ) ↔ 𝑁 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
56 |
6 45 55
|
3bitrd |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 sadd 𝐵 ) ↔ 𝑁 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |