Description: A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sate0fv0 | ⊢ ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat∈ 𝑈 ) → 𝑆 = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | ⊢ ∅ ∈ V | |
2 | satef | ⊢ ( ( ∅ ∈ V ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ∅ Sat∈ 𝑈 ) ) → 𝑆 : ω ⟶ ∅ ) | |
3 | 1 2 | mp3an1 | ⊢ ( ( 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ∅ Sat∈ 𝑈 ) ) → 𝑆 : ω ⟶ ∅ ) |
4 | 3 | ex | ⊢ ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat∈ 𝑈 ) → 𝑆 : ω ⟶ ∅ ) ) |
5 | f00 | ⊢ ( 𝑆 : ω ⟶ ∅ ↔ ( 𝑆 = ∅ ∧ ω = ∅ ) ) | |
6 | 5 | simplbi | ⊢ ( 𝑆 : ω ⟶ ∅ → 𝑆 = ∅ ) |
7 | 4 6 | syl6 | ⊢ ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat∈ 𝑈 ) → 𝑆 = ∅ ) ) |