Metamath Proof Explorer


Theorem sate0fv0

Description: A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023)

Ref Expression
Assertion sate0fv0 ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat 𝑈 ) → 𝑆 = ∅ ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 satef ( ( ∅ ∈ V ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ∅ Sat 𝑈 ) ) → 𝑆 : ω ⟶ ∅ )
3 1 2 mp3an1 ( ( 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ∅ Sat 𝑈 ) ) → 𝑆 : ω ⟶ ∅ )
4 3 ex ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat 𝑈 ) → 𝑆 : ω ⟶ ∅ ) )
5 f00 ( 𝑆 : ω ⟶ ∅ ↔ ( 𝑆 = ∅ ∧ ω = ∅ ) )
6 5 simplbi ( 𝑆 : ω ⟶ ∅ → 𝑆 = ∅ )
7 4 6 syl6 ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ∅ Sat 𝑈 ) → 𝑆 = ∅ ) )