Metamath Proof Explorer


Theorem sb8iota

Description: Variable substitution in description binder. Compare sb8eu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 18-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypothesis sb8iota.1 𝑦 𝜑
Assertion sb8iota ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sb8iota.1 𝑦 𝜑
2 nfv 𝑤 ( 𝜑𝑥 = 𝑧 )
3 2 sb8 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) )
4 sbbi ( [ 𝑤 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ↔ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 ) )
5 1 nfsb 𝑦 [ 𝑤 / 𝑥 ] 𝜑
6 equsb3 ( [ 𝑤 / 𝑥 ] 𝑥 = 𝑧𝑤 = 𝑧 )
7 nfv 𝑦 𝑤 = 𝑧
8 6 7 nfxfr 𝑦 [ 𝑤 / 𝑥 ] 𝑥 = 𝑧
9 5 8 nfbi 𝑦 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 )
10 4 9 nfxfr 𝑦 [ 𝑤 / 𝑥 ] ( 𝜑𝑥 = 𝑧 )
11 nfv 𝑤 [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑧 )
12 sbequ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ) )
13 10 11 12 cbvalv1 ( ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) )
14 equsb3 ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧𝑦 = 𝑧 )
15 14 sblbis ( [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) )
16 15 albii ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) )
17 3 13 16 3bitri ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) )
18 17 abbii { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) } = { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) }
19 18 unieqi { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) } = { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) }
20 dfiota2 ( ℩ 𝑥 𝜑 ) = { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) }
21 dfiota2 ( ℩ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) = { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝑦 = 𝑧 ) }
22 19 20 21 3eqtr4i ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )