| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sbabel.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							clabel | 
							⊢ ( { 𝑧  ∣  𝜑 }  ∈  𝐴  ↔  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							sbbii | 
							⊢ ( [ 𝑦  /  𝑥 ] { 𝑧  ∣  𝜑 }  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbex | 
							⊢ ( [ 𝑦  /  𝑥 ] ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) )  ↔  ∃ 𝑣 [ 𝑦  /  𝑥 ] ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sban | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) )  ↔  ( [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑣  ∈  𝐴  | 
						
						
							| 7 | 
							
								6
							 | 
							sbf | 
							⊢ ( [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴  ↔  𝑣  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							sbv | 
							⊢ ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝑣  ↔  𝑧  ∈  𝑣 )  | 
						
						
							| 9 | 
							
								8
							 | 
							sbrbis | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝑣  ↔  𝜑 )  ↔  ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sbalv | 
							⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							anbi12i | 
							⊢ ( ( [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) )  ↔  ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							bitri | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) )  ↔  ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							exbii | 
							⊢ ( ∃ 𝑣 [ 𝑦  /  𝑥 ] ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  𝜑 ) )  ↔  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 14 | 
							
								3 4 13
							 | 
							3bitri | 
							⊢ ( [ 𝑦  /  𝑥 ] { 𝑧  ∣  𝜑 }  ∈  𝐴  ↔  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							clabel | 
							⊢ ( { 𝑧  ∣  [ 𝑦  /  𝑥 ] 𝜑 }  ∈  𝐴  ↔  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑣  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							bitr4i | 
							⊢ ( [ 𝑦  /  𝑥 ] { 𝑧  ∣  𝜑 }  ∈  𝐴  ↔  { 𝑧  ∣  [ 𝑦  /  𝑥 ] 𝜑 }  ∈  𝐴 )  |