Metamath Proof Explorer


Theorem sbanOLD

Description: Obsolete version of sban as of 13-Aug-2023. Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbanOLD ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbn ( [ 𝑦 / 𝑥 ] ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ [ 𝑦 / 𝑥 ] ( 𝜑 → ¬ 𝜓 ) )
2 sbim ( [ 𝑦 / 𝑥 ] ( 𝜑 → ¬ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ¬ 𝜓 ) )
3 sbn ( [ 𝑦 / 𝑥 ] ¬ 𝜓 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜓 )
4 3 imbi2i ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ¬ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜓 ) )
5 2 4 bitri ( [ 𝑦 / 𝑥 ] ( 𝜑 → ¬ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜓 ) )
6 1 5 xchbinx ( [ 𝑦 / 𝑥 ] ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜓 ) )
7 df-an ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜓 ) )
8 7 sbbii ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝑦 / 𝑥 ] ¬ ( 𝜑 → ¬ 𝜓 ) )
9 df-an ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ¬ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜓 ) )
10 6 8 9 3bitr4i ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )