Metamath Proof Explorer


Theorem sbanOLD

Description: Obsolete version of sban as of 13-Aug-2023. Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbanOLD
|- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) )

Proof

Step Hyp Ref Expression
1 sbn
 |-  ( [ y / x ] -. ( ph -> -. ps ) <-> -. [ y / x ] ( ph -> -. ps ) )
2 sbim
 |-  ( [ y / x ] ( ph -> -. ps ) <-> ( [ y / x ] ph -> [ y / x ] -. ps ) )
3 sbn
 |-  ( [ y / x ] -. ps <-> -. [ y / x ] ps )
4 3 imbi2i
 |-  ( ( [ y / x ] ph -> [ y / x ] -. ps ) <-> ( [ y / x ] ph -> -. [ y / x ] ps ) )
5 2 4 bitri
 |-  ( [ y / x ] ( ph -> -. ps ) <-> ( [ y / x ] ph -> -. [ y / x ] ps ) )
6 1 5 xchbinx
 |-  ( [ y / x ] -. ( ph -> -. ps ) <-> -. ( [ y / x ] ph -> -. [ y / x ] ps ) )
7 df-an
 |-  ( ( ph /\ ps ) <-> -. ( ph -> -. ps ) )
8 7 sbbii
 |-  ( [ y / x ] ( ph /\ ps ) <-> [ y / x ] -. ( ph -> -. ps ) )
9 df-an
 |-  ( ( [ y / x ] ph /\ [ y / x ] ps ) <-> -. ( [ y / x ] ph -> -. [ y / x ] ps ) )
10 6 8 9 3bitr4i
 |-  ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) )