| Step |
Hyp |
Ref |
Expression |
| 1 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 2 |
|
exdistr |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 3 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 4 |
3
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 5 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 8 |
1 2 7
|
3bitr3i |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 9 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 10 |
|
sbc5 |
⊢ ( [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 11 |
8 9 10
|
3bitr4i |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 12 |
|
sbc5 |
⊢ ( [ 𝐵 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) |
| 13 |
12
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) |
| 14 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 15 |
14
|
sbcbii |
⊢ ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 16 |
11 13 15
|
3bitr4i |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |