| Step |
Hyp |
Ref |
Expression |
| 1 |
|
excom |
|- ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) |
| 2 |
|
exdistr |
|- ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
| 3 |
|
an12 |
|- ( ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ ( x = A /\ ph ) ) ) |
| 4 |
3
|
exbii |
|- ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( y = B /\ ( x = A /\ ph ) ) ) |
| 5 |
|
19.42v |
|- ( E. x ( y = B /\ ( x = A /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 6 |
4 5
|
bitri |
|- ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 7 |
6
|
exbii |
|- ( E. y E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 8 |
1 2 7
|
3bitr3i |
|- ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 9 |
|
sbc5 |
|- ( [. A / x ]. E. y ( y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
| 10 |
|
sbc5 |
|- ( [. B / y ]. E. x ( x = A /\ ph ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 11 |
8 9 10
|
3bitr4i |
|- ( [. A / x ]. E. y ( y = B /\ ph ) <-> [. B / y ]. E. x ( x = A /\ ph ) ) |
| 12 |
|
sbc5 |
|- ( [. B / y ]. ph <-> E. y ( y = B /\ ph ) ) |
| 13 |
12
|
sbcbii |
|- ( [. A / x ]. [. B / y ]. ph <-> [. A / x ]. E. y ( y = B /\ ph ) ) |
| 14 |
|
sbc5 |
|- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
| 15 |
14
|
sbcbii |
|- ( [. B / y ]. [. A / x ]. ph <-> [. B / y ]. E. x ( x = A /\ ph ) ) |
| 16 |
11 13 15
|
3bitr4i |
|- ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. [. A / x ]. ph ) |