Step |
Hyp |
Ref |
Expression |
1 |
|
df-fn |
⊢ ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) |
2 |
1
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) ) |
3 |
2
|
sbcbidv |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] 𝐹 Fn 𝐴 ↔ [ 𝑋 / 𝑥 ] ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) ) |
4 |
|
sbcfung |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] Fun 𝐹 ↔ Fun ⦋ 𝑋 / 𝑥 ⦌ 𝐹 ) ) |
5 |
|
sbceqg |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] dom 𝐹 = 𝐴 ↔ ⦋ 𝑋 / 𝑥 ⦌ dom 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
6 |
|
csbdm |
⊢ ⦋ 𝑋 / 𝑥 ⦌ dom 𝐹 = dom ⦋ 𝑋 / 𝑥 ⦌ 𝐹 |
7 |
6
|
eqeq1i |
⊢ ( ⦋ 𝑋 / 𝑥 ⦌ dom 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ↔ dom ⦋ 𝑋 / 𝑥 ⦌ 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
8 |
5 7
|
bitrdi |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] dom 𝐹 = 𝐴 ↔ dom ⦋ 𝑋 / 𝑥 ⦌ 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
9 |
4 8
|
anbi12d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( [ 𝑋 / 𝑥 ] Fun 𝐹 ∧ [ 𝑋 / 𝑥 ] dom 𝐹 = 𝐴 ) ↔ ( Fun ⦋ 𝑋 / 𝑥 ⦌ 𝐹 ∧ dom ⦋ 𝑋 / 𝑥 ⦌ 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
10 |
|
sbcan |
⊢ ( [ 𝑋 / 𝑥 ] ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ↔ ( [ 𝑋 / 𝑥 ] Fun 𝐹 ∧ [ 𝑋 / 𝑥 ] dom 𝐹 = 𝐴 ) ) |
11 |
|
df-fn |
⊢ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐹 Fn ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ↔ ( Fun ⦋ 𝑋 / 𝑥 ⦌ 𝐹 ∧ dom ⦋ 𝑋 / 𝑥 ⦌ 𝐹 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
12 |
9 10 11
|
3bitr4g |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐹 Fn ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
13 |
3 12
|
bitrd |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] 𝐹 Fn 𝐴 ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐹 Fn ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |