| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 2 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 3 |
2
|
imim2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 4 |
3
|
impd |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 5 |
4
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 6 |
|
19.23t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) ) |
| 7 |
6
|
biimpa |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 8 |
5 7
|
sylan2 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 9 |
8
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 10 |
1 9
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜓 ) ) |
| 11 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) |
| 12 |
11
|
imim2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 13 |
12
|
com23 |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 14 |
13
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 15 |
|
19.21t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 17 |
14 16
|
sylan2 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 18 |
17
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 19 |
|
sbc6g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 21 |
18 20
|
sylibrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 22 |
10 21
|
impbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |