| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc5 |
|- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
| 2 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
| 3 |
2
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
| 4 |
3
|
impd |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A /\ ph ) -> ps ) ) |
| 5 |
4
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ( x = A /\ ph ) -> ps ) ) |
| 6 |
|
19.23t |
|- ( F/ x ps -> ( A. x ( ( x = A /\ ph ) -> ps ) <-> ( E. x ( x = A /\ ph ) -> ps ) ) ) |
| 7 |
6
|
biimpa |
|- ( ( F/ x ps /\ A. x ( ( x = A /\ ph ) -> ps ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 8 |
5 7
|
sylan2 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 9 |
8
|
3adant1 |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 10 |
1 9
|
biimtrid |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph -> ps ) ) |
| 11 |
|
biimpr |
|- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
| 12 |
11
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) |
| 13 |
12
|
com23 |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ps -> ( x = A -> ph ) ) ) |
| 14 |
13
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ps -> ( x = A -> ph ) ) ) |
| 15 |
|
19.21t |
|- ( F/ x ps -> ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) ) |
| 16 |
15
|
biimpa |
|- ( ( F/ x ps /\ A. x ( ps -> ( x = A -> ph ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 17 |
14 16
|
sylan2 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 18 |
17
|
3adant1 |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 19 |
|
sbc6g |
|- ( A e. V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
| 21 |
18 20
|
sylibrd |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> [. A / x ]. ph ) ) |
| 22 |
10 21
|
impbid |
|- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |