| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbralie.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 4 |
3
|
sblim |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 → 𝜑 ) ) |
| 5 |
|
elsb2 |
⊢ ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) |
| 6 |
5
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 7 |
4 6
|
bitri |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 9 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 10 |
9 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 11 |
10
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 13 |
12
|
sbbii |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 14 |
|
sbal |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
| 16 |
15
|
sblim |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 17 |
|
elsb2 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) |
| 18 |
17
|
imbi1i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 19 |
16 18
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 20 |
19
|
albii |
⊢ ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 21 |
13 14 20
|
3bitrri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 22 |
11 21
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 23 |
22
|
sbbii |
⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 24 |
|
sbal |
⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ) |
| 25 |
|
sbco2vv |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 26 |
23 24 25
|
3bitr3i |
⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 27 |
2 8 26
|
3bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |