| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbralie.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 3 |
|
elequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) ) |
| 4 |
3
|
imbi1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) ) |
| 5 |
4
|
sbievw |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 7 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 8 |
7 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 9 |
8
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 10 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 11 |
10
|
sbbii |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 12 |
|
sbal |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 13 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
| 14 |
13
|
imbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 15 |
14
|
sbievw |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 16 |
15
|
albii |
⊢ ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 17 |
11 12 16
|
3bitrri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 18 |
9 17
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 19 |
18
|
sbbii |
⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 20 |
|
sbal |
⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ) |
| 21 |
|
sbco2vv |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 22 |
19 20 21
|
3bitr3i |
⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 23 |
2 6 22
|
3bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |