Metamath Proof Explorer


Theorem sbralie

Description: Implicit to explicit substitution that swaps variables in a restrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004) Avoid ax-ext , df-cleq , df-clel . (Revised by Wolf Lammen, 10-Mar-2025) Avoid ax-10 , ax-12 . (Revised by SN, 13-Nov-2025)

Ref Expression
Hypothesis sbralie.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion sbralie ( ∀ 𝑥𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 sbralie.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
3 elequ2 ( 𝑧 = 𝑦 → ( 𝑥𝑧𝑥𝑦 ) )
4 3 imbi1d ( 𝑧 = 𝑦 → ( ( 𝑥𝑧𝜑 ) ↔ ( 𝑥𝑦𝜑 ) ) )
5 4 sbievw ( [ 𝑦 / 𝑧 ] ( 𝑥𝑧𝜑 ) ↔ ( 𝑥𝑦𝜑 ) )
6 5 albii ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥𝑧𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
7 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑧𝑦𝑧 ) )
8 7 1 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝑧𝜑 ) ↔ ( 𝑦𝑧𝜓 ) ) )
9 8 cbvalvw ( ∀ 𝑥 ( 𝑥𝑧𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝑧𝜓 ) )
10 df-ral ( ∀ 𝑦𝑥 𝜓 ↔ ∀ 𝑦 ( 𝑦𝑥𝜓 ) )
11 10 sbbii ( [ 𝑧 / 𝑥 ] ∀ 𝑦𝑥 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦𝑥𝜓 ) )
12 sbal ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦𝑥𝜓 ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦𝑥𝜓 ) )
13 elequ2 ( 𝑥 = 𝑧 → ( 𝑦𝑥𝑦𝑧 ) )
14 13 imbi1d ( 𝑥 = 𝑧 → ( ( 𝑦𝑥𝜓 ) ↔ ( 𝑦𝑧𝜓 ) ) )
15 14 sbievw ( [ 𝑧 / 𝑥 ] ( 𝑦𝑥𝜓 ) ↔ ( 𝑦𝑧𝜓 ) )
16 15 albii ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦𝑥𝜓 ) ↔ ∀ 𝑦 ( 𝑦𝑧𝜓 ) )
17 11 12 16 3bitrri ( ∀ 𝑦 ( 𝑦𝑧𝜓 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )
18 9 17 bitri ( ∀ 𝑥 ( 𝑥𝑧𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )
19 18 sbbii ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥𝑧𝜑 ) ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )
20 sbal ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥𝑧𝜑 ) ↔ ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥𝑧𝜑 ) )
21 sbco2vv ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )
22 19 20 21 3bitr3i ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥𝑧𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )
23 2 6 22 3bitr2i ( ∀ 𝑥𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )