Metamath Proof Explorer


Theorem sdomne0

Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025)

Ref Expression
Assertion sdomne0 ( 𝐵𝐴𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex1i ( 𝐵𝐴𝐵 ∈ V )
3 breq1 ( 𝐵 = ∅ → ( 𝐵𝐴 ↔ ∅ ≺ 𝐴 ) )
4 3 biimpd ( 𝐵 = ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
5 4 a1i ( 𝐵 ∈ V → ( 𝐵 = ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) ) )
6 0sdomg ( 𝐵 ∈ V → ( ∅ ≺ 𝐵𝐵 ≠ ∅ ) )
7 sdomtr ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∅ ≺ 𝐴 )
8 7 ex ( ∅ ≺ 𝐵 → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
9 6 8 biimtrrdi ( 𝐵 ∈ V → ( 𝐵 ≠ ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) ) )
10 5 9 pm2.61dne ( 𝐵 ∈ V → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
11 2 10 syl ( 𝐵𝐴 → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
12 1 brrelex2i ( ∅ ≺ 𝐴𝐴 ∈ V )
13 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
14 12 13 syl ( ∅ ≺ 𝐴 → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
15 14 ibi ( ∅ ≺ 𝐴𝐴 ≠ ∅ )
16 11 15 syl6 ( 𝐵𝐴 → ( 𝐵𝐴𝐴 ≠ ∅ ) )
17 16 pm2.43i ( 𝐵𝐴𝐴 ≠ ∅ )