Metamath Proof Explorer


Theorem sdomne0

Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025)

Ref Expression
Assertion sdomne0 B A A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i B A B V
3 breq1 B = B A A
4 3 biimpd B = B A A
5 4 a1i B V B = B A A
6 0sdomg B V B B
7 sdomtr B B A A
8 7 ex B B A A
9 6 8 biimtrrdi B V B B A A
10 5 9 pm2.61dne B V B A A
11 2 10 syl B A B A A
12 1 brrelex2i A A V
13 0sdomg A V A A
14 12 13 syl A A A
15 14 ibi A A
16 11 15 syl6 B A B A A
17 16 pm2.43i B A A