| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqomlem.a |
⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
| 2 |
|
peano1 |
⊢ ∅ ∈ ω |
| 3 |
|
fvres |
⊢ ( ∅ ∈ ω → ( ( 𝑄 ↾ ω ) ‘ ∅ ) = ( 𝑄 ‘ ∅ ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) = ( 𝑄 ‘ ∅ ) |
| 5 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ ∅ ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) |
| 6 |
|
opex |
⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ V |
| 7 |
6
|
rdg0 |
⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 8 |
4 5 7
|
3eqtri |
⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 9 |
|
frfnom |
⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω |
| 10 |
1
|
reseq1i |
⊢ ( 𝑄 ↾ ω ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) |
| 11 |
10
|
fneq1i |
⊢ ( ( 𝑄 ↾ ω ) Fn ω ↔ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω ) |
| 12 |
9 11
|
mpbir |
⊢ ( 𝑄 ↾ ω ) Fn ω |
| 13 |
|
fnfvelrn |
⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ ∅ ) ∈ ran ( 𝑄 ↾ ω ) ) |
| 14 |
12 2 13
|
mp2an |
⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) ∈ ran ( 𝑄 ↾ ω ) |
| 15 |
8 14
|
eqeltrri |
⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ran ( 𝑄 ↾ ω ) |
| 16 |
|
df-ima |
⊢ ( 𝑄 “ ω ) = ran ( 𝑄 ↾ ω ) |
| 17 |
15 16
|
eleqtrri |
⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ( 𝑄 “ ω ) |
| 18 |
|
df-br |
⊢ ( ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ↔ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ( 𝑄 “ ω ) ) |
| 19 |
17 18
|
mpbir |
⊢ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) |
| 20 |
1
|
seqomlem2 |
⊢ ( 𝑄 “ ω ) Fn ω |
| 21 |
|
fnbrfvb |
⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) ↔ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ) ) |
| 22 |
20 2 21
|
mp2an |
⊢ ( ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) ↔ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ) |
| 23 |
19 22
|
mpbir |
⊢ ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) |