Metamath Proof Explorer


Theorem sersub

Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses sersub.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
sersub.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
sersub.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺𝑘 ) ∈ ℂ )
sersub.4 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) )
Assertion sersub ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 sersub.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 sersub.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
3 sersub.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺𝑘 ) ∈ ℂ )
4 sersub.4 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) )
5 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
7 subcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥𝑦 ) ∈ ℂ )
8 7 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥𝑦 ) ∈ ℂ )
9 addsub4 ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) = ( ( 𝑥𝑧 ) + ( 𝑦𝑤 ) ) )
10 9 eqcomd ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥𝑧 ) + ( 𝑦𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) )
11 10 adantl ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) ) → ( ( 𝑥𝑧 ) + ( 𝑦𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) )
12 6 8 11 1 2 3 4 seqcaopr2 ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) )