| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqcaopr2.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
seqcaopr2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) |
| 3 |
|
seqcaopr2.3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 4 |
|
seqcaopr2.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
seqcaopr2.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 6 |
|
seqcaopr2.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 7 |
|
seqcaopr2.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
| 8 |
|
elfzouz |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 |
|
elfzouz2 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 12 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 14 |
13
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 15 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 19 |
18
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 20 |
16 19
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 21 |
14 20
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 22 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 23 |
9 21 22
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 24 |
|
fzofzp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 27 |
26
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 28 |
15 24 27
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 29 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 31 |
30
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 32 |
31
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 33 |
29 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 35 |
14 34
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 36 |
9 35 22
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 37 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 40 |
29 24 39
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 41 |
3
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 42 |
41
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 43 |
42
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 49 |
46 48
|
eqeq12d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 50 |
49
|
2ralbidv |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝑦 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 55 |
52 54
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 56 |
55
|
2ralbidv |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 57 |
50 56
|
rspc2va |
⊢ ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 58 |
36 40 44 57
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 60 |
59
|
oveq1d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
| 61 |
|
oveq1 |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( 𝑧 + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) |
| 63 |
60 62
|
eqeq12d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 68 |
65 67
|
eqeq12d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 69 |
63 68
|
rspc2va |
⊢ ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 70 |
23 28 58 69
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 71 |
1 2 4 5 6 7 70
|
seqcaopr3 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |